Convergence of the Cotangent Formula: AnOverview

نویسنده

  • Max Wardetzky
چکیده

The cotangent formula constitutes an intrinsic discretization of the Laplace– Beltrami operator on polyhedral surfaces in a finite element sense. This note gives an overview of approximation and convergence properties of discrete Laplacians and mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth surface in euclidean 3–space. In particular, we show that mean curvature vectors converge in the sense of distributions, but fail to converge in L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of a Cotangent Sum Associated to the Estermann Zeta Function

Cotangent sums are associated to the zeros of the Estermann zeta function. They have also proven to be of importance in the Nyman-Beurling criterion for the Riemann Hypothesis. The main result of the paper is the proof of the existence of a unique positive measure μ on R, with respect to which certain normalized cotangent sums are equidistributed. Improvements as well as further generalizations...

متن کامل

Modify the linear search formula in the BFGS method to achieve global convergence.

<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...

متن کامل

A cotangent sum related to zeros of the Estermann zeta function

We consider a cotangent sum related to Estermann's Zeta function. We provide an elementary and self-contained improvement of the error term in an asymptotic formula proved by V. I. Vasyunin.

متن کامل

O ct 2 00 8 SINGULAR COTANGENT BUNDLE REDUCTION & SPIN CALOGERO - MOSER SYSTEMS

We develop a bundle picture for singular symplectic quotients of cotangent bundles acted upon by cotangent lifted actions for the case that the configuration manifold is of single orbit type. Furthermore, we give a formula for the reduced symplectic form in this setting. As an application of this bundle picture we consider Calogero-Moser systems with spin associated to polar representations of ...

متن کامل

The Orbit Bundle Picture of Cotangent Bundle Reduction

Cotangent bundle reduction theory is a basic and well developed subject in which one performs symplectic reduction on cotangent bundles. One starts with a (free and proper) action of a Lie group G on a configuration manifold Q, considers its natural cotangent lift to T ∗Q and then one seeks realizations of the corresponding symplectic or Poisson reduced space. We further develop this theory by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007